原因一:多核CPU的缓存
当程序在运行过程中,会将运算需要的数据从主存复制一份到CPU的高速缓存当中,那么CPU进行计算时就可以直接从它的高速缓存读取数据和向其中写入数据,当运算结束之后,再将高速缓存中的数据刷新到主存当中。
按照数据读取顺序和与CPU结合的紧密程度,CPU缓存可以分为一级缓存(L1),二级缓存(L3),部分高端CPU还具有三级缓存(L3),每一级缓存中所储存的全部数据都是下一级缓存的一部分。
当CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找。
单核CPU只含有一套L1,L2,L3缓存;如果CPU含有多个核心,即多核CPU,则每个核心都含有一套L1(甚至和L2)缓存,而共享L3(或者和L2)缓存。
- 单线程。cpu核心的缓存只被一个线程访问。缓存独占,不会出现访问冲突等问题。
- 单核CPU,多线程。进程中的多个线程会同时访问进程中的共享数据,CPU将某块内存加载到缓存后,不同线程在访问相同的物理地址的时候,都会映射到相同的缓存位置,这样即使发生线程的切换,缓存仍然不会失效。但由于任何时刻只能有一个线程在执行,因此不会出现缓存访问冲突。
- 多核CPU,多线程。每个核都至少有一个L1 缓存。多个线程访问进程中的某个共享内存,且这多个线程分别在不同的核心上执行,则每个核心都会在各自的caehe中保留一份共享内存的缓冲。由于多核是可以并行的,可能会出现多个线程同时写各自的缓存的情况,而各自的cache之间的数据就有可能不同。这就是缓存一致性问题。
原因二:处理器优化和指令重排
那就是为了使处理器内部的运算单元能够尽量的被充分利用,处理器可能会对输入代码进行乱序执行处理。这就是处理器优化。
除了现在很多流行的处理器会对代码进行优化乱序处理,很多编程语言的编译器也会有类似的优化,比如Java虚拟机的即时编译器(JIT)也会做指令重排。
并发编程
并发编程中的线程安全,必须保证三个条件:
- 原子性:是指在一个操作中就是cpu不可以在中途暂停然后再调度,既不被中断操作,要不执行完成,要不就不执行。
- 可见性:是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
- 有序性:即程序执行的顺序按照代码的先后顺序执行。
内存模型
为了保证共享内存的正确性(可见性、有序性、原子性),内存模型定义了共享内存系统中多线程程序读写操作行为的规范。通过这些规则来规范对内存的读写操作,从而保证指令执行的正确性。
Python中的线程安全
python中由于GIL(Global Interpreter Lock)的存在,即使开了多线程,同一个时间也只有一个线程在执行,但Python不是线程安全的。
GIL:任何python线程在执行之前都需要先获得GIL锁,然后每执行一部分代码,解释器就会自动释放GIL锁,其他线程就可以竞争这个锁,只有得到才能执行程序。对于CPU密集型程序,GIL锁的影响在于,有了它的存在,开启多线程无法利用多核优势,也就是只能用到一个核CPU来运行代码,要想用到多个核只能开启多进程(或者使用不带有GIL锁的解释器)。
- 使用线程锁: threading.Lock() / threading.RLock()
- 使用原子操作